3 and 4 .Determinants and Matrices
normal

If matrix $A = {\left[ {{a_{ij}}} \right]_{3 \times 3}} , B = {\left[ {{b_{ij}}} \right]_{3 \times 3}}$ , where $a_{ij} + a_{ji} = 0$ and $b_{ij} -b_{ji} = 0\, \forall\, i , j$ then $A^4B^3$ is

A

Singular

B

Zero matrix

C

Symmetric

D

Skew symmetric

Solution

Hence $a_{i j}=-a_{j j} \Rightarrow A^{T}=-A$ and $B^{T}=B$

and $\mathrm{A}, \mathrm{B}$ are $3 \times 3$ matrices,

Hence $|\mathrm{A}|=0 \Rightarrow\left|\mathrm{A}^{4} \mathrm{B}^{3}\right|=0 \Rightarrow \mathrm{A}^{4} \mathrm{B}^{3}$ is singular

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.