- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If matrix $A = {\left[ {{a_{ij}}} \right]_{3 \times 3}} , B = {\left[ {{b_{ij}}} \right]_{3 \times 3}}$ , where $a_{ij} + a_{ji} = 0$ and $b_{ij} -b_{ji} = 0\, \forall\, i , j$ then $A^4B^3$ is
A
Singular
B
Zero matrix
C
Symmetric
D
Skew symmetric
Solution
Hence $a_{i j}=-a_{j j} \Rightarrow A^{T}=-A$ and $B^{T}=B$
and $\mathrm{A}, \mathrm{B}$ are $3 \times 3$ matrices,
Hence $|\mathrm{A}|=0 \Rightarrow\left|\mathrm{A}^{4} \mathrm{B}^{3}\right|=0 \Rightarrow \mathrm{A}^{4} \mathrm{B}^{3}$ is singular
Standard 12
Mathematics